
Emscripten: An LLVM-to-JavaScript Compiler

Alon Zakai
Mozilla

azakai@mozilla.com

Abstract
We present Emscripten, a compiler from LLVM (Low Level
Virtual Machine) assembly to JavaScript. This opens up
two avenues for running code written in languages other
than JavaScript on the web: (1) Compile code directly into
LLVM assembly, and then compile that into JavaScript using
Emscripten, or (2) Compile a language’s entire runtime into
LLVM and then JavaScript, as in the previous approach, and
then use the compiled runtime to run code written in that
language. For example, the former approach can work for
C and C++, while the latter can work for Python; all three
examples open up new opportunities for running code on the
web.

Emscripten itself is written in JavaScript and is avail-
able under the MIT license (a permissive open source li-
cense), at http://www.emscripten.org. As a compiler
from LLVM to JavaScript, the challenges in designing Em-
scripten are somewhat the reverse of the norm – one must go
from a low-level assembly into a high-level language, and
recreate parts of the original high-level structure of the code
that were lost in the compilation to low-level LLVM. We
detail the methods used in Emscripten to deal with those
challenges, and in particular present and prove the validity
of Emscripten’s Relooper algorithm, which recreates high-
level loop structures from low-level branching data.

1. Introduction
Since the mid 1990’s, JavaScript [5] has been present in
most web browsers (sometimes with minor variations and
under slightly different names, e.g., JScript in Internet Ex-
plorer), and today it is well-supported on essentially all
web browsers, from desktop browsers like Internet Ex-
plorer, Firefox, Chrome and Safari, to mobile browsers on

[Copyright notice will appear here once ’preprint’ option is removed.]

smartphones and tablets. Together with HTML and CSS,
JavaScript forms the standards-based foundation of the web.

Running other programming languages on the web has
been suggested many times, and browser plugins have al-
lowed doing so, e.g., via the Java and Flash plugins. How-
ever, plugins must be manually installed and do not integrate
in a perfect way with the outside HTML. Perhaps more prob-
lematic is that they cannot run at all on some platforms, for
example, Java and Flash cannot run on iOS devices such as
the iPhone and iPad. For those reasons, JavaScript remains
the primary programming language of the web.

There are, however, reasonable motivations for running
code from other programming languages on the web, for ex-
ample, if one has a large amount of existing code already
written in another language, or if one simply has a strong
preference for another language and perhaps is more pro-
ductive in it. As a consequence, there has been work on
tools to compile languages into JavaScript. Since JavaScript
is present in essentially all web browsers, by compiling one’s
language of choice into JavaScript, one can still generate
content that will run practically everywhere.

Examples of the approach of compiling into JavaScript
include the Google Web Toolkit [8], which compiles Java
into JavaScript; Pyjamas1, which compiles Python into
JavaScript; SCM2JS [6], which compiles Scheme to JavaScript,
Links [3], which compiles an ML-like language into JavaScript;
and AFAX [7], which compiles F# to JavaScript; see also
[1] for additional examples. While useful, such tools usually
only allow a subset of the original language to be compiled.
For example, multithreaded code (with shared memory) is
not possible on the web, so compiling code of that sort is
not directly possible. There are also often limitations of the
conversion process, for example, Pyjamas compiles Python
to JavaScript in a nearly 1-to-1 manner, and as a conse-
quence the underlying semantics are those of JavaScript, not
Python, so for example division of integers can yield unex-
pected results (it should yield an integer in Python 2.x, but
in JavaScript and in Pyjamas a floating-point number can be
generated).

In this paper we present another project along those lines:
Emscripten, which compiles LLVM (Low Level Virtual

1 http://pyjs.org/

1 2011/7/23

Machine2) assembly into JavaScript. LLVM is a compiler
project primarily focused on C, C++ and Objective-C. It
compiles those languages through a frontend (the main ones
of which are Clang and LLVM-GCC) into the LLVM in-
termediary representation (which can be machine-readable
bitcode, or human-readable assembly), and then passes it
through a backend which generates actual machine code for
a particular architecure. Emscripten plays the role of a back-
end which targets JavaScript.

By using Emscripten, potentially many languages can be
run on the web, using one of the following methods:

• Compile code in a language recognized by one of the
existing LLVM frontends into LLVM, and then compile
that into JavaScript using Emscripten. Frontends for var-
ious languages exist, including many of the most popular
programming languages such as C and C++, and also var-
ious new and emerging languages (e.g., Rust3).

• Compile the runtime used to parse and execute code in a
particular language into LLVM, then compile that into
JavaScript using Emscripten. It is then possible to run
code in that runtime on the web. This is a useful approach
if a language’s runtime is written in a language for which
an LLVM frontend exists, but the language itself has no
such frontend. For example, there is currently no frontend
for Python, however it is possible to compile CPython –
the standard implementation of Python, written in C –
into JavaScript, and run Python code on that (see Sec-
tion 4).

From a technical standpoint, one challenge in design-
ing and implementing Emscripten is that it compiles a low-
level language – LLVM assembly – into a high-level one –
JavaScript. This is somethat the reverse of the usual situa-
tion one is in when building a compiler, and leads to some
unique difficulties. For example, to get good performance in
JavaScript one must use natural JavaScript code flow struc-
tures, like loops and ifs, but those structures do not exist in
LLVM assembly (instead, what is present there is a ‘soup of
code fragments’: blocks of code with branching information
but no high-level structure). Emscripten must therefore re-
construct a high-level representation from the low-level data
it receives.

In theory that issue could have been avoided by compiling
a higher-level language into JavaScript. For example, if com-
piling Java into JavaScript (as the Google Web Toolkit does),
then one can benefit from the fact that Java’s loops, ifs and so
forth generally have a very direct parallel in JavaScript. But
of course the downside in that approach is it yields a com-
piler only for Java. In Section 3.2 we present the ‘Relooper’
algorithm, which generates high-level loop structures from
the low-level branching data present in LLVM assembly. It
is similar to loop recovery algorithms used in decompilation

2 http://llvm.org/
3 https://github.com/graydon/rust/

(see, for example, [2], [9]). The main difference between the
Relooper and standard loop recovery algorithms is that the
Relooper generates loops in a different language than that
which was compiled originally, whereas decompilers gen-
erally assume they are returning to the original language.
The Relooper’s goal is not to accurately recreate the original
source code, but rather to generate native JavaScript control
flow structures, which can then be implemented efficiently
in modern JavaScript engines.

Another challenge in Emscripten is to maintain accuracy
(that is, to keep the results of the compiled code the same
as the original) while not sacrificing performance. LLVM
assembly is an abstraction of how modern CPUs are pro-
grammed for, and its basic operations are not all directly
possible in JavaScript. For example, if in LLVM we are to
add two unsigned 8-bit numbers x and y, with overflowing
(e.g., 255 plus 1 should give 0), then there is no single oper-
ation in JavaScript which can do this – we cannot just write
x+ y, as that would use the normal JavaScript semantics. It
is possible to emulate a CPU in JavaScript, however doing
so is very slow. Emscripten’s approach is to allow such emu-
lation, but to try to use it as little as possible, and to provide
tools that help one find out which parts of the compiled code
actually need such full emulation.

We conclude this introduction with a list of this paper’s
main contributions:

• We describe Emscripten itself, during which we detail its
approach in compiling LLVM into JavaScript.

• We give details of Emscripten’s Relooper algorithm,
mentioned earlier, which generates high-level loop struc-
tures from low-level branching data, and prove its valid-
ity.

In addition, the following are the main contributions of Em-
scripten itself, that to our knowledge were not previously
possible:

• It allows compiling a very large subset of C and C++ code
into JavaScript, which can then be run on the web.

• By compiling their runtimes, it allows running languages
such as Python on the web (with their normal semantics).

The remainder of this paper is structured as follows. In
Section 2 we describe the approach Emscripten takes to
compiling LLVM assembly into JavaScript, and show some
benchmark data. In Section 3 we describe Emscripten’s in-
ternal design and in particular elaborate on the Relooper al-
gorithm. In Section 4 we give several example uses of Em-
scripten. In Section 5 we summarize and give directions for
future work.

2. Compilation Approach
Let us begin by considering what the challenge is, when we
want to compile LLVM assembly into JavaScript. Assume
we are given the following simple example of a C program:

2 2011/7/23

#include <stdio.h>

int main()

{

int sum = 0;

for (int i = 1; i < 100; i++)

sum += i;

printf("1+...+100=%d\n", sum);

return 0;

}

This program calculates the sum of the integers from 1
to 100. When compiled by Clang, the generated LLVM
assembly code includes the following:

@.str = private constant [14 x i8]

c"1+...+100=%d\0A\00"

define i32 @main() {

%1 = alloca i32, align 4

%sum = alloca i32, align 4

%i = alloca i32, align 4

store i32 0, i32* %1

store i32 0, i32* %sum, align 4

store i32 1, i32* %i, align 4

br label %2

; <label>:2

%3 = load i32* %i, align 4

%4 = icmp slt i32 %3, 100

br i1 %4, label %5, label %12

; <label>:5

%6 = load i32* %i, align 4

%7 = load i32* %sum, align 4

%8 = add nsw i32 %7, %6

store i32 %8, i32* %sum, align 4

br label %9

; <label>:9

%10 = load i32* %i, align 4

%11 = add nsw i32 %10, 1

store i32 %11, i32* %i, align 4

br label %2

; <label>:12

%13 = load i32* %sum, align 4

%14 = call i32 (i8*, ...)*

@printf(i8* getelementptr inbounds

([14 x i8]* @.str, i32 0, i32 0),

i32 %13)

ret i32 0

}

At first glance, this may look more difficult to translate into
JavaScript than the original C++. However, compiling C++
in general would require writing code to handle preprocess-

ing, classes, templates, and all the idiosyncrasies and com-
plexities of C++. LLVM assembly, while more verbose in
this example, is lower-level and simpler to work on. Com-
piling it also has the benefit we mentioned earlier, which is
one of the main goals of Emscripten, that it allows many
languages can be compiled into LLVM and not just C++.

A detailed overview of LLVM assembly is beyond our
scope here (see http://llvm.org/docs/LangRef.html).
Briefly, though, the example assembly above can be seen to
define a function main(), then allocate some values on the
stack (alloca), then load and store various values (load and
store). We do not have the high-level code structure as we
had in C++ (with a loop), instead we have labeled code
fragments, called LLVM basic blocks, and code flow moves
from one to another by branch (br) instructions. (Label 2 is
the condition check in the loop; label 5 is the body, label 9
is the increment, and label 12 is the final part of the func-
tion, outside of the loop). Conditional branches can depend
on calculations, for example the results of comparing two
values (icmp). Other numerical operations include addition
(add). Finally, printf is called (call). The challenge, then, is
to convert this and things like it into JavaScript.

In general, Emscripten’s main approach is to translate
each line of LLVM assembly into JavaScript, 1 to 1, into
‘normal’ JavaScript as much as possible. So, for example,
an add operation becomes a normal JavaScript addition, a
function call becomes a JavaScript function call, etc. This
1 to 1 translation generates JavaScript that resembles the
original assembly code, for example, the LLVM assembly
code shown before for main() would be compiled into the
following:

function _main() {

var __stackBase__ = STACKTOP;

STACKTOP += 12;

var __label__ = -1;

while(1) switch(__label__) {

case -1:

var $1 = __stackBase__;

var $sum = __stackBase__+4;

var $i = __stackBase__+8;

HEAP[$1] = 0;

HEAP[$sum] = 0;

HEAP[$i] = 0;

__label__ = 0; break;

case 0:

var $3 = HEAP[$i];

var $4 = $3 < 100;

if ($4) { __label__ = 1; break; }

else { __label__ = 2; break; }

case 1:

var $6 = HEAP[$i];

var $7 = HEAP[$sum];

var $8 = $7 + $6;

HEAP[$sum] = $8;

3 2011/7/23

__label__ = 3; break;

case 3:

var $10 = HEAP[$i];

var $11 = $10 + 1;

HEAP[$i] = $11;

__label__ = 0; break;

case 2:

var $13 = HEAP[$sum];

var $14 = _printf(__str, $13);

STACKTOP = __stackBase__;

return 0;

}

}

Some things to take notice of:

• A switch-in-a-loop construction is used in order to let the
flow of execution move between basic blocks of code in
an arbitrary manner: We set label to the (numerical
representation of the) label of the basic block we want
to reach, and do a break, which leads to the proper basic
block being reached. Inside each basic block, every line
of code corresponds to a line of LLVM assembly, gener-
ally in a very straightforward manner.

• Memory is implemented by HEAP, a JavaScript array.
Reading from memory is a read from that array, and
writing to memory is a write. STACKTOP is the current
position of the stack. (Note that we allocate 4 memory
locations for 32-bit integers on the stack, but only write
to 1 of them. See Section 2.1.1 for why.)

• LLVM assembly functions become JavaScript functions,
and function calls are normal JavaScript function calls. In
general, we attempt to generate as ‘normal’ JavaScript as
possible.

• We implemented the LLVM add operation using simple
addition in JavaScript. As mentioned earlier, the seman-
tics of that code are not entirely identical to those of the
original LLVM assembly code (in this case, overflows
will have very different effects). We will explain Em-
scripten’s approach to that problem in Section 2.1.2.

2.1 Performance
In this section we will deal with several topics regard-
ing Emscripten’s approach to generating high-performance
JavaScript code.

2.1.1 Load-Store Consistency (LSC)
We saw before that Emscripten’s memory usage allocates the
usual number of bytes on the stack for variables (4 bytes for
a 32-bit integer, etc.). However, we only wrote values into
the first location, which appeared odd. We will now see the
reason for that.

To get there, we must first step back, and note that Em-
scripten does not aim to achieve perfect compatibility with
all possible LLVM assembly (and correspondingly, with all

possible C or C++ code, etc.); instead, Emscripten targets
a large subset of LLVM assembly code, which is portable
and does not make crucial assumptions about the underlying
CPU architecture on which the code is meant to run. That
subset is meant to encompass the vast majority of real-world
code that would be compiled into LLVM, while also being
compilable into very performant JavaScript.

More specifically, Emscripten assumes that the LLVM
assembly code it is compiling has Load-Store Consistency
(LSC), which is the requirement that after a value with a
specific type is written to a memory location, loads from
that memory location will be of the same type (until a value
with a different type is written there). Normal C and C++
code generally does so: If x is a variable containing a 32-bit
floating point number, then both loads and stores of x will
be of 32-bit floating point values, and not 16-bit unsigned
integers or anything else.

To see why this is important for performance, consider
the following C code fragment, which does not have LSC:

int x = 12345;

printf("first byte: %d\n", *((char*)&x));

Assuming an architecture with more than 8 bits, this code
will read the first byte of x. (This might, for example, be
used to detect the endianness of the CPU.) To compile this
into JavaScript in a way that will run properly, we must do
more than a single operation for either the read or the write,
for example we could do this:

var x_value = 12345;

var x_addr = stackAlloc(4);

HEAP[x_addr] = (x_value >> 0) & 255;

HEAP[x_addr+1] = (x_value >> 8) & 255;

HEAP[x_addr+2] = (x_value >> 16) & 255;

HEAP[x_addr+3] = (x_value >> 24) & 255;

[...]

printf("first byte: %d\n", HEAP[x_addr]);

Here we allocate space for the value of x on the stack, and
store that address in x addr. The stack itself is part of the
‘memory space’, which is the array HEAP. In order for the
read on the final line to give the proper value, we must go
to the effort of doing 4 store operations, each of the value
of a particular byte. In other words, HEAP is an array of
bytes, and for each store into memory, we must deconstruct
the value into bytes.4

Alternatively, we can store the value in a single operation,
and deconstruct into bytes as we load. This will be faster in
some cases and slower in others, but is still more overhead
than we would like, generally speaking – for if the code does
4 Note that we can use JavaScript typed arrays with a shared memory buffer,
which would work as expected, assuming (1) we are running in a JavaScript
engine which supports typed arrays, and (2) we are running on a CPU
with the same architecture as we expect. This is therefore dangerous as
the generated code may run differently on different JavaScript engines and
different CPUs. Emscripten currently has optional experimental support for
typed arrays.

4 2011/7/23

have LSC, then we can translate that code fragment into the
far more optimal

var x_value = 12345;

var x_addr = stackAlloc(4);

HEAP[x_addr] = x_value;

[...]

printf("first byte: %d\n", HEAP[x_addr]);

(Note that even this can be optimized even more – we can
store x in a normal JavaScript variable. We will discuss such
optimizations in Section 2.1.3; for now we are just clarifying
why it is useful to assume we are compiling code that has
LSC.)

In practice the vast majority of C and C++ code does have
LSC. Exceptions do exist, however, for example:

• Code that detects CPU features like endianness, the be-
havior of floats, etc. In general such code can be disabled
before running it through Emscripten, as it is not actually
needed.

• memset and related functions typically work on values
of one kind, regardless of the underlying values. For
example, memset may write 64-bit values on a 64-bit
CPU since that is usually faster than writing individual
bytes. This tends to not be a problem, as with memset
the most common case is setting to 0, and with memcpy,
the values end up copied properly anyhow (with a proper
implementation of memcpy in Emscripten’s generated
code).

• Even LSC-obeying C or C++ code may turn into LLVM
assembly that does not, after being optimized. For ex-
ample, when storing two 32-bit integers constants into
adjoining locations in a structure, the optimizer may gen-
erate a single 64-bit store of an appropriate constant. In
other words, optimization can generate nonportable code,
which runs faster on the current CPU, but nowhere else.
Emscripten currently assumes that optimizations of this
form are not being used.

In practice it may be hard to know if code has LSC or not,
and requiring a time-consuming code audit is obviously im-
practical. Emscripten therefore has a compilation option,
SAFE HEAP, which generates code that checks that LSC
holds, and warns if it doesn’t. It also warns about other
memory-related issues like reading from memory before
a value was written (somewhat similarly to tools like Val-
grind5). When such problems are detected, possible so-
lutions are to ignore the issue (if it has no actual con-
sqeuences), or alter the source code.

Note that it is somewhat wasteful to allocate 4 memory
locations for a 32-bit integer, and use only one of them. It is
possible to change that behavior with the QUANTUM SIZE
parameter to Emscripten, however, the difficulty is that
LLVM assembly has hardcoded values that depend on the

5 http://valgrind.org/

usual memory sizes being used. We are looking into modifi-
cations to LLVM itself to remedy that.

2.1.2 Emulating Code Semantics
As mentioned in the introduction, the semantics of LLVM
assembly and JavaScript are not identical: The former is very
close to that of a modern CPU, while the latter is a high-level
dynamic language. Both are of course Turing-complete, so it
is possible to precisely emulate each in the other, but doing
so with good performance is more challenging. For example,
if we want to convert

add i8 %1, %2

(add two 8-bit integers) to JavaScript, then to be completely
accurate we must emulate the exact same behavior, in partic-
ular, we must handle overflows properly, which would not be
the case if we just implement this as %1+%2 in JavaScript.
For example, with inputs of 255 and 1, the correct output is
0, but simple addition in JavaScript will give us 256. We can
of course emulate the proper behavior by adding additional
code. This however significantly degrades performance, be-
cause modern JavaScript engines can often translate some-
thing like z = x + y into native code containing a single
instruction (or very close to that), but if instead we had some-
thing like z = (x + y)&255 (in order to correct overflows),
the JavaScript engine would need to generate additional code
to perform the AND operation.6

Emscripten’s approach to this problem is to allow the
generation of both accurate code, that is identical in behavior
to LLVM assembly, and inaccurate code which is faster. In
practice, most addition operations in LLVM do not overflow,
and can simply be translated into %1 + %2. Emscripten
provides tools that make it straightforward to find which
code does require the slower, more accurate code, and to
generate that code in those locations, as follows:

• Compile the code using Emscripten with special options
that generate runtime checking. CHECK OVERFLOWS
adds runtime checks for integer overflows, CHECK SIGNS
checks for signing issues (the behavior of signed and un-
signed integers can be different, and JavaScript does not
natively support that difference), and CHECK ROUNDINGS
checks for rounding issues (in C and C++, the conven-
tion is to round towards 0, while in JavaScript there is no
simple operation that does the same).

6 In theory, the JavaScript engine could determine that we are implicitly
working on 8-bit values here, and generate machine code that no longer
needs the AND operation. However, most or all modern JavaScript engines
have just two internal numeric types, doubles and 32-bit integers. This is so
because they are tuned for ‘normal’ JavaScript code on the web, which in
most cases is served well by just those two types.
In addition, even if JavaScript engines did analyze code containing &255,
etc., in order to deduce that a variable can be implemented as an 8-bit
integer, there is a cost to including all the necessary &255 text in the script,
because code size is a significant factor on the web. Adding even a few
characters for every single mathematic operation, in a large JavaScript file,
could add up to a significant increase in download size.

5 2011/7/23

• Run the compiled code on a representative sample of
inputs, and notice which lines are warned about by the
runtime checks.

• Recompile the code, telling Emscripten to add correc-
tions (using CORRECT SIGNS, CORRECT OVERFLOWS
or CORRECT ROUNDINGS) only on the specific lines
that actually need it.

This method is not guaranteed to work, as if we do not
run on a truly representative sample of possible inputs, we
may not compile with all necessary corrections. It is of
course possible to compile with all corrections applied to
all the code, to make sure things will work properly (this
is the default compilation setting), however, in practice the
procedure above works quite well, and results in code is
significantly faster.

2.1.3 Emscripten Code Optimizations
When comparing the example program from page 3, the
generated code was fairly complicated and cumbersome, and
unsurprisingly it performs quite poorly. There are two main
reasons for that: First, that the code is simply unoptimized –
there are many variables declared when fewer could suffice,
for example, and second, that the code does not use ‘normal’
JavaScript, which JavaScript engines are optimized for –
it stores all variables in an array (not normal JavaScript
variables), and it controls the flow of execution using a
switch-in-a-loop, not normal JavaScript loops and ifs.

Emscripten’s approach to generating fast-performing
code is as follows. Emscripten doesn’t do any optimiza-
tions that can be done by other tools: LLVM can be used
to perform optimizations before Emscripten, and the Clo-
sure Compiler7 can perform optimizations on the generated
JavaScript afterwards. Those tools will perform standard
useful optimizations like removing unneeded variables, dead
code elimination, function inlining, etc. That leaves two ma-
jor optimizations that are left for Emscripten to perform:

• Variable nativization: Convert variables that are on the
stack – which is implemented using addresses in the
HEAP array as mentioned earlier – into native JavaScript
variables (that is to say, var x; and so forth). In general, a
variable will be nativized unless it is used outside that
function, e.g., if its address is taken and stored some-
where or passed to another function. When optimizing,
Emscripten tries to nativize as many variables as possi-
ble.

• Relooping: Recreate high-level loop and if structures
from the low-level code block data that appears in LLVM
assembly. We describe Emscripten’s Relooper algorithm
in Section 3.2.

When run with Emscripten’s optimizations, the code on
page 3 looks like this:

7 http://code.google.com/closure/compiler/

function _main() {

var __label__;

var $1;

var $sum;

var $i;

$1 = 0;

$sum = 0;

$i = 0;

$2$2: while(1) {

var $3 = $i;

var $4 = $3 < 100;

if (!($4)) { __label__ = 2; break $2$2; }

var $6 = $i;

var $7 = $sum;

var $8 = $7 + $6;

$sum = $8;

var $10 = $i;

var $11 = $10 + 1;

$i = $11;

__label__ = 0; continue $2$2;

}

var $13 = $sum;

var $14 = _printf(__str, $13);

return 0;

}

If in addition the Closure Compiler is run on that output, we
get

function K() {

var a, b;

b = a = 0;

a:for(;;) {

if(!(b < 100)) {

break a

}

a += b;

b += 1;

}

_printf(J, a);

return 0;

}

which is fairly close to the original C++ (the differences, of
having the loop’s condition inside the loop instead of inside
the for() expression at the top of the original loop, are not
important to performance). Thus, it is possible to recreate the
original high-level structure of the code that was compiled
into LLVM assembly.

2.2 Benchmarks
We will now take a look at some performance benchmarks:

6 2011/7/23

benchmark SM V8 gcc ratio
fannkuch (10) 1.158 0.931 0.231 4.04
fasta (2100000) 1.115 1.128 0.452 2.47
primes 1.443 3.194 0.438 3.29
raytrace (7,256) 1.930 2.944 0.228 8.46
dlmalloc (400,400) 5.050 1.880 0.315 5.97

The first column is the name of the benchmark, and in
parentheses any parameters used in running it. The source
code to all the benchmarks can be found at https://

github.com/kripken/emscripten/tree/master/tests

(each in a separate file with its name, except for ‘primes’,
which is embedded inside runner.py in the function test primes).
A brief summary of the benchmarks is as follows:

• fannkuch and fasta are commonly-known benchmarks,
appearing for example on the Computer Language Bench-
marks Game8. They use a mix of mathematic operations
(integer in the former, floating-point in the latter) and
memory access.

• primes is the simplest benchmark in terms of code. It is
basically just a tiny loop that calculates prime numbers.

• raytrace is real-world code, from the sphereflake ray-
tracer9. This benchmark has a combination of memory
access and floating-point math.

• dlmalloc (Doug Lea’s malloc10) is a well-known real-
world implementation of malloc and free. This bench-
mark does a large amount of calls to malloc and free in
an intermixed way, which tests memory access and inte-
ger calculations.

Returning to the table of results, the second column is
the elapsed time (in seconds) when running the compiled
code (generated using all Emscripten and LLVM optimiza-
tions as well as the Closure Compiler) in the SpiderMonkey
JavaScript engine (specifically the JaegerMonkey branch,
checked out June 15th, 2011). The third column is the
elapsed time when running the same JavaScript code in the
V8 JavaScript engine (checked out Jun 15th, 2011). In both
the second and third column lower values are better; the best
of the two is in bold. The fourth column is the elapsed time
when running the original code compiled with gcc -O3, us-
ing GCC 4.4.4. The last column is the ratio, that is, how
much slower the JavaScript code (running in the faster of
the two engines for that test) is when compared to gcc. All
the tests were run on a MacBook Pro with an Intel i7 CPU
clocked at 2.66GHz, running on Ubuntu 10.04.

Clearly the results greatly vary by the benchmark, with
the generated JavaScript running from 2.47 to 8.46 times
slower. There are also significant differences between the

8 http://shootout.alioth.debian.org/
9 http://ompf.org/ray/sphereflake/
10 http://en.wikipedia.org/wiki/Malloc#dlmalloc_and_its_

derivatives

two JavaScript engines, with each better at some of the
benchmarks. It appears that code that does simple numerical
operations – like the primes test – can run fairly fast, while
code that has a lot of memory accesses, for example due
to using structures – like the raytrace test – will be slower.
(The main issue with structures is that Emscripten does not
‘nativize’ them yet, as it does to simple local variables.)

Being 2.47 to 8.46 times slower than the most-optimized
C++ code is a significant slowdown, but it is still more
than fast enough for many purposes, and the main point
of course is that the code can run anywhere the web can
be accessed. Further work on Emscripten is expected to
improve the speed as well, as are improvements to LLVM,
the Closure Compiler, and JavaScript engines themselves;
see further discussion in the Summary.

2.3 Limitations
Emscripten’s compilation approach, as has been described
in this Section so far, is to generate ‘natural’ JavaScript, as
close as possible to normal JavaScript on the web, so that
modern JavaScript engines perform well on it. In particu-
lar, we try to generate ‘normal’ JavaScript operations, like
regular addition and multiplication and so forth. This is a
very different approach than, say, emulating a CPU on a low
level, or for the case of LLVM, writing an LLVM bitcode
interpreter in JavaScript. The latter approach has the bene-
fit of being able to run virtually any compiled code, at the
cost of speed, whereas Emscripten makes a tradeoff in the
other direction. We will now give a summary of some of the
limitations of Emscripten’s approach.

• 64-bit Integers: JavaScript numbers are all 64-bit dou-
bles, with engines typically implementing them as 32-
bit integers where possible for speed. A consequence of
this is that it is impossible to directly implement 64-bit
integers in JavaScript, as integer values larger than 32
bits will become doubles, with only 53 bits for the sig-
nificand. Thus, when Emscripten uses normal JavaScript
addition and so forth for 64-bit integers, it runs the risk
of rounding effects. This could be solved by emulating
64-bit integers, but it would be much slower than native
code.

• Multithreading: JavaScript has Web Workers, which are
additional threads (or processes) that communicate via
message passing. There is no shared state in this model,
which means that it is not directly possible to compile
multithreaded code in C++ into JavaScript. A partial so-
lution could be to emulate threads, without Workers, by
manually controlling which blocks of code run (a varia-
tion on the switch in a loop construction mentioned ear-
lier) and manually switching between threads every so
often. However, in that case there would not be any uti-
lization of additional CPU cores, and furthermore perfor-
mance would be slow due to not using normal JavaScript
loops.

7 2011/7/23

After seeing these limitations, it is worth noting that some
advanced LLVM instructions turn out to be surprisingly easy
to implement. For example, C++ exceptions are represented
in LLVM by invoke and unwind, where invoke is a call to a
function that will potentially trigger an unwind, and unwind
returns to the earliest invoke. If one were to implement
those in a typical compiler, doing so would require careful
work. In Emscripen, however, it is possible to do so using
JavaScript exceptions in a straightforward manner: invoke
becomes a function call wrapped in a try block, and unwind
becomes throw. This is a case where compiling to a high-
level language turns out to be quite convenient.

3. Emscripten’s Architecture
In the previous section we saw a general overview of Em-
scripten’s approach to compiling LLVM assembly code into
JavaScript. We will now get into more detail into how Em-
scripten itself is implemented.

Emscripten is written in JavaScript. The primary reason
for that decision was convenience: Two simple examples of
the benefits of that approach are that (1) the compiler can
create JavaScript objects that represent constant structures
from the original assembly code, and convert them to a string
using JSON.stringify() in a trivial manner, and (2) the com-
piler can simplify numerical operations by simply eval()ing
the code (so “1+2” would become “3”, etc.). In both exam-
ples, the development of Emscripten was made simpler by
having the exact same environment during compilation as
the executing code will have. This also helps in more com-
plex ways, for example when the same code needs to be run
at compile time and at runtime, and makes various dynamic
compilation techniques possible in the future.

Emscripten’s compilation has three main phases:

• The intertyper, which converts from LLVM assembly
into Emscripten’s internal representation.

• The analyzer, which inspects the internal representation
and generates various useful information for the final
phase, including type and variable information, stack us-
age analysis, optional data for optimizations (variable na-
tivization and relooping), etc.

• The jsifier, which does the final conversion of the in-
ternal representation plus additional analyzed data into
JavaScript.

3.1 The Runtime Environment
Code generated from Emscripten is meant to run in a
JavaScript engine, typically in a web browser. This has im-
plications for the kind of runtime environment we can gen-
erate for it, for example, there is no direct access to the local
filesystem.

Emscripten comes with a partial implementation of a C
library, mostly written from scratch in JavaScript, with parts

compiled from an existing C library11. Some aspects of the
runtime environment, as implemented in that C library, are:

• An emulated filesystem is available, with files stored in
memory.

• Emscripten allows writing pixel data to an HTML5 can-
vas element, using a subset of the SDL API. That is,
one can write an application in C or C++ using SDL,
and that same application can be compiled normally and
run locally, or compiled using Emscripten and run on the
web. See, for example, Emscripten’s raytracing demo at
http://syntensity.com/static/raytrace.html.

• sbrk() is implemented using the HEAP array which was
mentioned previously. This allows a normal malloc() im-
plementation written in C to be compiled to JavaScript.

3.2 The Relooper: Recreating high-level loop
structures

The Relooper the most complex module in Emscripten. It
receives a ‘soup of blocks’, which is a set of labeled frag-
ments of code, each ending with a branch operation, and the
goal is to generate normal high-level JavaScript code flow
structures such as loops and ifs. Generating such code struc-
tures is essential to producing good-performing code, since
JavaScript engines are tuned to run such code very quickly
(for example, a tracing JIT as in SpiderMonkey will only
trace normal loops).

Returning to the LLVM assembly code on page 3, it has
the following structure (where arrows denote potential paths
of execution):

In this simple example, it is fairly straightforward to see
that a natural way to implement it using normal loop struc-
tures is

11 newlib, http://sourceware.org/newlib/

8 2011/7/23

ENTRY

while (true) do

2

if (condition) break

5

9

12

In general though, this is not always easy or even practical –
there may not be a straightforward high-level loop structure
corresponding to the low-level one, if for example the orig-
inal C code relied heavily on goto instructions. In practice,
however, almost all real-world C and C++ code tends to be
amenable to loop recreation.

We now begin to describe the Relooper algorithm. As
mentioned before, it takes as input a ‘soup of labeled LLVM
blocks’ as described above, and generates a structured set
of Emscripten code blocks, which are each a set of LLVM
blocks with some logical structure. For simplicity we call
LLVM blocks ‘labels’ and Emscripten blocks ‘blocks’ in the
following.

There are three types of Emscripten blocks:

• Simple block: A block with

One Internal label, and

a Next block, which the internal label branches to.
The block is later translated simply into the code for
that label, and the Next block appears right after it.

• Loop: A block that represents a basic loop, comprised of
two internal sub-blocks:

Inner: A block that will appear inside the loop, i.e.,
when execution reaches the end of that block, flow
will return to the beginning. Typically a loop will
contain a conditional break defining where it is exited.
When we exit, we reach the Next block, below.

Next: A block that will appear just outside the loop,
in other words, that will be reached when the loop is
exited.

• Multiple: A block that represents a divergence into sev-
eral possible branches, that eventually rejoin. A Multiple
block can implement an ‘if’, an ‘if-else’, a ‘switch’, etc.
It is comprised of:

Handled blocks: A set of blocks to which execution
can enter. When we reach the multiple block, we
check which of them should execute, and go there.
When execution of that block is complete, or if none
of the handled blocks was selected for execution, we
proceed to the Next block, below.

Next: A block that will appear just after the Handled
blocks, in other words, that will be reached after code
flow exits the Handled blocks.

To clarify these definitions, the example LLVM assembly
code we have been working with could be represented in a
natural way as

Simple

entry

Loop

Simple

2

Simple

5

Simple

9

null

Simple

12

null

where the first indented line in a Simple block is the Internal
label in that Simple block, the second indented line is its
Next block, and so forth.

Continuing to describe the Relooper algorithm, we will
use the term ‘entry’ to mean a label that can be reached im-
mediately in a block. In other words, a block consists of
labels l1, .., ln, and the entries are a subset of those labels,
specifically the ones that execution can directly reach when
we reach that block. With that definition, the Relooper algo-
rithm can then be written as follows:

• Receive a set of labels and which of them are entry
points. We wish to create a block comprised of all those
labels.

• Calculate, for each label, which other labels it can
reach, i.e., which labels we are able to reach if we start
at the current label and follow one of the possible paths
of execution.

• If we have a single entry, and cannot return to it (by
some other label later on branching to it) then create a
Simple block, with the entry as its internal label, and the
Next block comprised of all the other labels. The entries
for the Next block are the entries to which the internal
label can branch.

• If we can return to all of the entries, create a Loop
block, whose Inner block is comprised of all labels that
can reach one of the entries, and whose Next block is
comprised of all the others. The entry labels for the cur-
rent block become entry labels for the Inner block (note
that they must be in the Inner block by definition, as each
one can reach itself). The Next block’s entry labels are
all the labels in the Next block that can be reached by the
Inner block.

• If we have more than one entry, try to create a Multi-
ple block: For each entry, find all the labels it reaches that
cannot be reached by any other entry. If at least one entry
has such labels, return a Multiple block, whose Handled

9 2011/7/23

blocks are blocks for those labels (and whose entries are
those labels), and whose Next block is all the rest. Entries
for the next block are entries that did not become part of
the Handled blocks, and also labels that can be reached
from the Handled blocks.

• If we could not create a Multiple block, then create
a Loop block as described above (see proof below of
why creating a Loop block is possible, i.e., why the labels
contain a loop).

Note that we first create a Loop only if we must, then try to
create a Multiple, then create a Loop if we have no other
choice. We could have slightly simplified this in various
ways, but the algorithm as presented above has given overall
better results in practice, in terms of the ‘niceness’ of the
shape of the generated code, both subjectively and at least in
some simple benchmarks.

Additional details of the algorithm include

• The technical mechanism by which execution flow is
controlled in the generated code involves the label
variable, mentioned earlier. Whenever we enter a block
with more than one entry, we set label before we
branch into it, and we check its value when we enter that
block. So, for example, when we create a Loop block, its
Next block can have multiple entries – any label to which
we branch out from the loop. By creating a Multiple
block after the loop, we can enter the proper label when
the loop is exited. (Having a label variable does add
some overhead, but it greatly simplifies the problem that
the Relooper needs to solve and allows us to only need
three kinds of blocks as described above. Of course, it is
possible to optimize away writes and reads to label in
many or even most cases.)

• As the Relooper processes labels, it replaces branch in-
structions accordingly. For example, when we create a
Loop block, then all branch instructions to the outside
of the loop are converted into break commands (since a
break instruction in JavaScript will indeed get us to out-
side of the loop), and all branch instructions to the begin-
ning of the loop are converted into continue commands,
etc. Those commands are then ignored when called recur-
sively to generate the Inner block (that is, the break and
continue commands are guaranteed, by the semantics of
JavaScript, to get us to where we need to go – they do not
need any further work for them to work properly).

• Emscripten also does an additional pass after what has
been described thus far, which was the first pass. The
first pass is guaranteed to produce valid output (see be-
low), while the second pass takes that valid output and
optimizes it, by making minor changes such as removing
continue commands that occur at the very end of loops
(where they are not needed), etc.

We now turn to an analysis of the Relooper algorithm.
It is straightforward to see that the output of the algorithm,
assuming it completes successfully – that is, that if finishes
in finite time, and does not run into an error in the last part
(where it is claimed that if we reach it we can return to
at least one of the entry labels) – is correct in the sense
of code execution being carried out as in the original data.
We will now prove that the algorithm must in fact complete
successfully.

First, note that if we successfully create a block, then we
simplify the remaining problem, where the ‘complexity’ of
the problem for our purposes here is the sum of labels plus
the sum of branching operations:

• This is trivial for Simple blocks (since we now have a
Next block which is strictly smaller).

• It is true for Loop blocks simply by removing branching
operations (there must be a branching back to an entry,
which becomes a continue).

• For Multiple blocks, if the Next block is non-empty then
we have split into strictly smaller blocks (in number of
labels) than before. If the next block is empty, then since
we built the Multiple block from a set of labels with
more than one entry, then the Handled blocks are strictly
smaller than the current one.

We have seen that whenever we successfully create a block,
we simplify the remaining problem as defined above, which
means that we must eventually halt successfully (since we
strictly decrease a nonnegative integer). The remaining issue
is whether we can reach a situation where we cannot suc-
cessfully create a block, which is if we reach the final part of
the relooper algorithm, but cannot create a Loop block there.
For that to occur, we must not be able to return to any of the
entries (or else we would create a Loop block). Assume that
indeed we cannot return to any of the entries. But if that is
so, we can create a Multiple block with Handled blocks that
each include one of the entries (and possibly additional la-
bels as well), since each entry label cannot be reached from
any other label by our assumption earlier, thus contradicting
that assumption and concluding the proof.

(We have not, of course, proven that the shape of the
blocks is optimal in any sense. However, even if it is possible
to optimize them further, the Relooper already gives a very
substantial speedup due to the move from the switch-in-
a-loop construction to more natural JavaScript code flow
structures.)

4. Example Uses
Emscripten has been run successfully on several real-world
codebases. We present some examples here to give an idea
of the various opportunities made possible by Emscripten.

• Python: It is possible to run variants of Python on the
web in various ways, including Pyjamas, IronPython on

10 2011/7/23

SilverLight and Jython in Java. However, all of these are
slightly nonstandard in the Python code they run, while
the latter two also require plugins to be installed. With
Emscripten, on the other hand, it is possible to compile
CPython itself – the standard, reference implementation
of Python – and run that on the web, which allows run-
ning standard Python code. An online demo is available
at http://syntensity.com/static/python.html.
(Another example of a language runtime that Emscripten
can convert to run on the web is Lua; an online demo is
available at http://syntensity.com/static/lua.

html.)
• Poppler and FreeType: Poppler12 is an open source

PDF rendering library. In combination with FreeType13,
an open source font engine, it can be used to render
PDF files. By compiling it with Emscripten, PDF files
can be viewed on the web, without the use of plugins
or external applications. An online demo is available at
http://syntensity.com/static/poppler.html

• Bullet: The Bullet Physics library14 is an open source
physics engine, used in many open source and propri-
etary applications. An online demo is available at http:
//syntensity.com/static/bullet.html, showing
a physics simulation of falling blocks that uses Bullet
compiled to JavaScript. Bullet has in the past been ported
to JavaScript15, by porting JBullet (a port of Bullet to
Java). The main difference in the approaches is that with
Emscripten, there is no need for time-consuming man-
ual conversion of C++ to Java and then to JavaScript,
and consequently, the latest Bullet code can be run in
JavaScript and not an earlier version (JBullet lags several
versions behind the latest Bullet release).

5. Summary
We presented Emscripten, an LLVM-to-JavaScript compiler,
which opens up numerous opportunities for running code
written in languages other than JavaScript on the web, in-
cluding some not previously possible. Emscripten can be
used to, among other things, compile real-world C and C++
code and run that on the web. In addition, by compiling the
runtimes of languages which are implemented in C and C++,
we can run them on the web as well, for example Python and
Lua.

Perhaps the largest future goal of Emscripten is to im-
prove the performance of the generated code. As we have
seen, speeds of around 1/10th that of GCC are possible,
which is already good enough for many purposes, but can be
improved much more. The code Emscripten generates will

12 http://poppler.freedesktop.org/
13 http://www.freetype.org/
14 http://bulletphysics.org/wordpress/
15 http://pl4n3.blogspot.com/2010/07/

bulletjs-javascript-physics-engine.html

become faster ‘for free’ as JavaScript engines get faster, and
also by improvements in the optimizations done by LLVM
and the Closure Compiler. However there is also a lot of
room for additional optimizations in Emscripten itself, in
particular in how it nativizes variables and structures, which
can potentially lead to very significant speedups.

When we compile a language’s entire runtime into JavaScript,
as mentioned before, there is another way to improve perfor-
mance. Assume that we are compiling a C or C++ runtime
of a language into JavaScript, and that that runtime uses
JIT compilation to generate machine code. Typically code
generators for JITs are written for the main CPU architec-
tures, today x86, x86 64 and ARM. However, it would be
possible for a JIT to generate JavaScript instead. Thus, the
runtime would be compiled using Emscripten, and at run-
time it would pass the JIT-generated JavaScript to eval. In
this scenario, JavaScript is used as a low-level intermedi-
ate representation in the runtime, and the final conversion
to machine code is left to the underlying JavaScript engine.
This approach can potentially allow languages that greatly
benefit from a JIT (such as Java, Lua, etc.) to be run on the
web efficiently.

Getting back to the issue of high-performing code in gen-
eral, it is worth comparing Emscripten to Portable Native
Client ([4], [10]), a project in development which aims to al-
low an LLVM-like format to be distributed and run securely
on the web, with speed comparable to native code.

Both Emscripten and PNaCl aim to allow code written in
languages like C and C++ to be run on the web, but in very
different ways: Emscripten compiles code into JavaScript,
and PNaCl compiles into an LLVM-like format which is
then run in a special PNaCl runtime. As a consequence,
Emscripten’s generated code can run on all web browsers,
since it is standard JavaScript, while PNaCl’s generated code
requires the PNaCl runtime to be installed; another major
difference is that JavaScript engines do not yet run code at
near-native speeds, while PNaCl does. In a broad summary,
Emscripten’s approach allows the code to be run in more
places, while PNaCl’s allows the code to run faster.

However, as mentioned earlier, improvements in JavaScript
engines and compiler technology may narrow the speed gap.
Also, when considering the speed of JavaScript engines,
for purposes of Emscripten we do not need to care about
all JavaScript, but only the kind generated by Emscripten.
Such code is implicitly statically typed, that is, types are
not mixed, despite JavaScript in general allowing assign-
ing, e.g., an integer to a variable and later a floating point
value or even an object to that same variable. Implicitly stat-
ically typed code can be statically analyzed and converted
into machine code that has no runtime type checks at all.
While such static analysis can be time-consuming, there are
practical ways for achieving similar results quickly, such as
tracing and type inference, which would help on such code
very significantly, and are already in use or being worked on

11 2011/7/23

in mainstream JavaScript engines (e.g., SpiderMonkey). As
a consequence, it may soon be possible to run code written
in languages such as C and C++ on the web with near-native
speed.

Acknowledgments
We thank the following people for their contributions to Em-
scripten: David LaPalomento, Daniel Heres, Brian Crowder,
Brian McKenna, dglead and tuba.

References
[1] J. Ashkenas. List of languages that com-

pile into JavaScript. Available at https:

//github.com/jashkenas/coffee-script/wiki/

List-of-languages-that-compile-to-JS. Retrieved
April 2011.

[2] C. Cifuentes, D. Simon and A. Fraboulet. Assembly to High-
Level Language Translation. In Int. Conf. on Softw. Maint, pp.
228–237, IEEE-CS Press, 1998.

[3] E. Cooper, S. Lindley, P. Wadler and J. Yallop. Links: Web
programming without tiers. In 5th International Symposium on
Formal Methods for Components and Objects (FMCO), 2006.

[4] A. Donovan, R. Muth, B. Chen and D. Sehr. PNaCl:
Portable Native Client Executables. Available at http://
nativeclient.googlecode.com/svn/data/site/pnacl.

pdf. Retrieved April 2011.

[5] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly
Media, 2006.

[6] F. Loitsch and M. Serrano. Hop Client-Side Compilation. In
Trends in Functional Programming, vol. 8, pp. 141–158, Seton
Hall University, Intellect Bristol, 2008.

[7] T. Petek and D. Syme. AFAX: Rich client/server web ap-
plications in F#. Draft. Available at http://tomasp.net/
academic/fswebtools.aspx. Retrieved April 2011.

[8] C. Prabhakar. Google Web Toolkit: GWT Java Ajax Program-
ming. Packt Publishing, 2007.

[9] T.A. Proebsting and S. A. Watterson. Krakatoa: Decompilation
in Java (Does Bytecode Reveal Source?) In Third USENIX
Conference on Object-Oriented Technologies and Systems
(COOTS), 1997.

[10] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In IEEE
Symposium on Security and Privacy, May 2009.

12 2011/7/23

